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Abstract

The use of fishing-vessel-based acoustic data has been recognised as an important way to 
estimate the distribution and relative abundance of Antarctic krill (Euphausia superba), 
yet the quality and even the utility of the data may be seriously degraded by interference 
noise due to the lack of synchronisation of the acoustic instruments found on some of 
the vessels. A simple method to remove significant interference noise was introduced 
based on relevant virtual variable operators in the existing acoustic data post-processing 
software. The utility of the method was demonstrated by applying it to the acoustic data 
at 38, 70 and 120 kHz collected from a Chinese krill fishing vessel. Results show that the 
interference noise was effectively reduced while structure and echo strength of the krill 
swarms were retained. The method may provide opportunity to improve the utility of 
fishing-vessel-based acoustic data for a range of objectives.
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Introduction
Acoustic sampling has long been used as an 

important tool for mapping the distribution and esti-
mating the abundance of Antarctic krill (Euphausia 
superba) in the Southern Ocean (Greene et al., 
1991). To date, only two large-scale multiship sci-
entific acoustic surveys, the FIBEX (Trathan et al., 
1995) and the CCAMLR-2000 krill synoptic sur-
vey of Area 48 (Watkins et al., 2004), have been 
undertaken across the main distribution centres 
of krill. The estimated standing stock of krill (B0) 
derived from the CCAMLR-2000 Survey is still 
used by the Commission for the Conservation of 
Antarctic Marine Living Resources (CCAMLR) to 
set the precautionary catch limit for the krill fish-
ery in the southwest Atlantic (Hewitt et al., 2004; 
CCAMLR, 2015). To improve the management of 
the krill fishery, an updated estimate of the current 
status of krill stock and its distribution at small-
scale management units is required (CCAMLR, 
2015). 

Compared with typical scientific surveys for 
krill, commercial fishing vessels usually operate at 
a more extensive spatial–temporal scale. In addi-
tion, some of these vessels have already installed, 
or intend to install, scientific echosounders that are 
the same or similar to those used by research ves-
sels. For example, three Chinese krill fishing vessels 
have Simrad EK60 scientific echosounder systems 
operating at 38, 70 and 120 kHz. It has been shown 
that various objectives, such as estimating krill 
abundance in a defined region or obtaining data on 
the spatial organisation of krill, can be achieved 
using acoustic data collected by fishing vessels 
(ICES, 2007; Skaret et al., 2012; Wang et al., 2014; 
Watkins et al., 2015). 

Owing to the design of fishing vessels, includ-
ing the lack of noise-reduction measures, acoustic 
data collected from them are more likely to be 
degraded by noise, including interference noise 
or impulsive noise (Ryan et al., 2015) and back-
ground noise, as well the attenuation of acoustic 
signal (Mitson, 1995; Simmonds and MacLennan, 
2005; ICES, 2007). If the acoustic data is going to 
be used for krill abundance estimation or swarm 
structure analysis, then the effect of such inter-
ference noise needs to be removed. Background 
noise can be estimated, and subsequently removed, 
using multiple post-processing methods (Watkins 
and Brierley, 1996; Korneliussen, 2000; De 
Robertis and Higginbottom, 2007). The effect of an 

attenuated signal may be compensated for by using 
the strength of the seabed return signal (Dalen and 
Lovik, 1981; Cox et al., 2006; Honkalehto et al., 
2011) or the deep-sea sound scattering layer as a 
reference (Ryan et al., 2015). Acoustic instruments, 
such as echosounders, fish finding or net monitor-
ing sonars that are likely to cause interference due 
to the lack of synchronisation, are widely used 
simultaneously during fishing operations (ICES, 
2007). The duration of the interference is less than 
one transmit–receive period (one ‘ping’) and for 
small datasets, a practical way to remove it is sim-
ply by manually defining these signals as bad data 
via visual inspection of the echogram during post-
processing (Dorn et al., 2002; Parker-Stetter et al., 
2009). However, such an approach would become 
very time-consuming, variable or even impractical 
if significant interference noise occurred widely 
throughout large datasets. Hence, there is a need 
for the development and consistent application of 
semi- or fully-automated post-processing methods 
(Cox et al., 2006). Based on a two-sided comparison 
method, an interference noise filter was described 
by Anderson et al. (2005) and was further applied 
to process the open-sea echo integration data by 
Kloser et al. (2009) and Ryan et al. (2015).

Currently, CCAMLR’s Subgroup on Acous-
tic Survey and Analysis Methods (SG-ASAM) 
is developing the protocols for the collection and 
analysis of krill fishing-vessel-based acoustic 
data (CCAMLR, 2015). As part of this activity, 
this paper presents a post-processing method to 
remove significant interference noise from acoustic 
data collected from krill fishing vessels. The main 
processing procedures are illustrated based on the 
existing virtual variables built into the Echoview 
acoustic data post-processing software (V4.90, 
Myriax, Pty Ltd., Australia, 2010; Higginbottom 
et al., 2008). The potential effects of applying this 
new method on echo integration and swarm struc-
ture analysis of krill are also assessed. 

Materials and methods
Raw acoustic data collection 

Acoustic data were collected using a SIMRAD 
EK60 echosounder system working at 38, 70 and 
120 kHz. The echosounder system was installed on 
board the Chinese krill fishing vessel Fu Rong Hai 
in December 2012 and was subsequently calibrated 
using the standard sphere method (Foote et al., 
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1987) at the anchorage outside Valparaiso, Chile. 
The vessel then fished for Antarctic krill (Euphau-
sia superba) in CCAMLR Statistical Subareas 48.1, 
48.2 and 48.3. Acoustic data were continuously 
logged throughout the cruise. Echosounder system 
configuration and parameter settings for acoustic 
data collection are shown in Table 1.

In addition to the EK60 system, the vessel was 
also equipped with a 38 kHz SIMRAD ES60 echo-
sounder, a 32 kHz KAIJO sonar, a three-frequency 
(24, 75, 200 kHz) KAIJO MEMO-2000 sonar and 
a 28 kHz JRC JFS-3380 sonar. All these devices 
were operational during normal fishing activities; 
however, none of them were synchronised with the 
EK60 echosounder due to the lack of suitable syn-
chronisation devices.  

Interference noise removal

The interference noise removal method pre-
sented here treats the volume backscattering 
strength (Sv, dB re 1 m–1) echogram as an array 
of values. Main processing procedures, as shown 
in Figure 1, are based on relevant virtual variable 
operators built in the Echoview software (V4.90, 
Myriax, Pty Ltd., Australia, 2010; Higginbottom et 
al., 2008). 

The specific operations in each step are described 
as follows, with operators indicated in Figure 2.

(i) Weak and strong interference thresholding

In order to remove the background noise and 
very strong interference signals, a minimum thresh-
old (Tmin, dB re 1 m–1) and a maximum threshold 
(Tmax, dB re 1 m–1) were determined and applied to 
the Sv echogram respectively. The Tmin can either 
be determined as the level that visually seems to 
give good discrimination of ‘target’ from ‘back-
ground’ scattering on the echogram (Lascara et al., 
1999) or biologically based on the measurements 
of krill visual acuity (Lawson et al., 2008). The 
Tmax applied here is defined as the maximum Sv of 
krill samples in the treated dataset, which can be 
determined by gradually increasing the minimum 
display color to the level while the target, such as 
krill swarms, are visually absent on the echogram. 

By thresholding, noise, including background 
noise and interference noise with the strength 
falling outside the thresholds [Tmin, Tmax], can be 

removed. Meanwhile, the removed Sv values were 
set as ‘vacant’ (–999 dB re 1 m, approximation of 
zero in the linear domain). However, noise with 
the strength falling within the range of [Tmin, Tmax] 
would remain intact in this stage.    

(ii) General removal of interference noise

To further remove the remaining interference 
and background noise, an ‘erosion’ filter was 
applied to the thresholded data. The filtering pro-
cess was done via a sliding window, wp,s, defined as
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Where wp,s is comprised of N × N samples 
of Sv values, N should be an odd number and 

( )1 2m N= - ; the subscripts p and s denote the 
ping number and the sample number in the ping 
respectively. 

During erosion filtering, the value, 
,p svS  at the 

centre sample is replaced by the minimum value 
of the N × N samples in window wp,s while mov-
ing across each sample. As a result, if the centre 
sample is interference noise occurred outside the 
krill swarm, it will be set as vacant based on the 
assumption that most of its neighbouring samples 
are vacant. 

Simultaneously, if there is any vacant sample 
inside the krill swarm (i.e. due to previous thresh-
olding processing), the 

,p svS  in the sliding window 
will also be set as vacant, resulting in an ‘empty 
hole’ on the swarm echogram.

(iii) Refilling the vacant samples inside swarms

To refill the empty hole in the swarm, a ‘dila-
tion’ filter was successively applied to the ero-
sion-filtered data (Figure 2, step iii). The dilation 
filter is also based on the sliding window method, 
however, it replaced the value, 

,p svS  of the centre 
sample with the maximum value of the samples in 
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window wp,s. The dimension (N1 × N1) of the slid-
ing window applied in the dilation filter should be 
larger than that applied in the erosion filter.

(iv) Swarm signal correction

During the erosion and dilation filtering, the 
Sv values of the resulting krill swarm signals were 
modified. In addition, the krill swarm signals with 
values above the maximum Sv threshold were 
removed as vacant due to thresholding. These 
errors must be corrected if the filtered data were 
used for echo integration purpose. 

To correct these errors, firstly, all the values of 
non-vacant samples in the dilation-filtered data 
were replaced by Sv at corresponding positions 
in the thresholded echogram. This is done via a 
combined application of ‘data range bitmap1’ and 
‘mask’ operators. The minimum and maximum 
values for data range bitmap1 were Tmin and Tmax 
respectively. Secondly, the krill signals which has 
strength above the maximum Sv threshold were 
compensated with an intermediate Sv level of its 
surrounding samples. This is done via a series 
of operators, including ‘data range bitmap2’, 
‘median’ filter and ‘select’ (Figure 2, step iv). The 
minimum value for data range bitmap2 was set as 
Tmax, as a result, the values above the maximum 
threshold were subsequently set as ‘true’ while the 
others as ‘false’. The median filter is also based on 
the sliding window method as above. Specifically, 
it replaced the centre sample with the median Sv in 
the window. Finally, by applying the select operator, 

the samples with true and false in the data range 
bitmap2 were attributed with the median-filtered 
data and the raw Sv at corresponding positions in 
the thresholded data.

Application of the method

To evaluate the performance of the method, it 
was applied to about 24 hours of acoustic data col-
lected during normal fishing activities in waters 
around the island of South Georgia on 24 August 
2013 (Figure 3). Typical trawling and cruising 
speeds were about 3 and 10 knots respectively. The 
swarm echoes mainly consisted of Antarctic krill 
based on simultaneous biological sampling using 
a commercial mid-water trawl with codend mesh 
size of 15 mm.

To determine the maximum threshold (Tmax), 
the echograms of the treated dataset were visually 
scrutinised while varying the minimum display 
colour. For 38 kHz, the echoes of krill swarms were 
absent on the echogram with a minimum display 
colour of –50 dB. Similarly, the maximum thresh-
olds for 70 and 120 kHz were determined as –45 
and –40 dB respectively. The minimum thresholds 
(Tmin) were set as –70 dB for 120 kHz as advised 
by Lawson et al. (2008) and –80 dB for both 38 and 
70 kHz by visual inspection of the echograms. 

Based on the available operators in the software, 
the sizes (N) of the sliding window in the erosion, 
dilation and median filters were set as 3 × 3, 7 × 7 
and 7 × 7 respectively.

Table 1: Parameter settings for the EK60 echosounder system during 
acoustic data collection. 

Parameters 38 kHz 70 kHz 120 kHz 

Transducer type ES38B ES70-7C ES120-7 
Transmitted power (W) 2000 750 250 
Pulse length (ms) 1.024 1.024 1.024 
Ping interval (s) 2 2 2 
Sample interval (m) 0.187 0.187 0.187 
Receiver bandwidth (kHz) 2.43 2.86 3.03 
Sound speed (m s–1) 1462 1462 1462 
Absorption coefficient (dB km–1) 10.4 19.2 27.8 
Two-way beam angle (dB)  –20.6 –21.0 –21.0 
Transducer gain (dB) 23.75 26.65 26.87 
Angle sensitivity alongship (°) 21.9 23.0 23.0 
Angle sensitivity athwarthship (°) 21.9 23.0 23.0 
3 dB beamwidth alongship (°) 7.09 7.13 7.13 
3 dB beamwidth athwarthship (°) 7.40 6.90 7.07 
Data collection range (m) 400 400 400 
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To assess the performance of the method, a 
series of descriptors of swarm structure, including 
mean volume backscattering strength (MVBS, dB 
re 1 m–1), perimeter, area, mean depth and thick-
ness of krill swarms, were obtained by applying 
the ‘school detection’ module (Higginbottom et al., 
2008; Diner, 2001) to the 120 kHz data. Parameters 
used for detecting krill swarms are shown in Table 2 
based on the specification in Klevjer et al. (2010). 
Subsequently, a two-sample t-test (hypothesising 
that the ‘means are equal’ at 5% significance level) 
was applied to compare the statistical difference of 
the descriptors of krill swarms between the results 
obtained from the raw and interference noise 
removed data.

Potential effect on echo integration was firstly 
investigated by comparing the difference of mean 
Sv over a random selected region. Mean Sv was 
defined as the arithmetic mean of the Sv sam-
ples over a 1 m depth bin performed in the linear 
domain. The effect was further evaluated based on 
the dB differences analysis (ΔMVBS – Madureira 
et al., 1993; Watkins and Brierley, 2002) between 
38, 70 and 120 kHz. The dB differences in the data-
set were calculated over the regions of krill swarm 
identified using the interference noise removed 
data at 120 kHz. The grid size for calculating the 
dB difference were 50 pings horizontally by 5 m 
vertically as advised by SC-CAMLR (2010). 

Results
Application of the method

Due to the lack of synchronisation of various 
acoustic instruments on board the vessel, substan-
tial ‘spike-like’ interference was detected at all three 
frequencies in the EK60 data, but were most pro-
nounced at 38 kHz (Figures 4a to 4c).  The vertical 

location and strength of the interference noise was 
frequency dependent (Figure 5). The background 
noise amplified by the time-varied gain (TVG) 
compensation increased with depth and were high-
est at 120 kHz. After removing the interference 
noise, the echograms of all the three frequencies 
were visibly improved (Figures 4d to 4f). The 
interference and background noise outside the 
krill swarms were effectively removed, although 
some interference was still evident at depths below 
200 m at 38 kHz. Furthermore, the geometrical 
shape and echo strength of the krill swarm seemed 
to be retained compared to the original echogram.

Effect on krill swarm structure

To further investigate the effect on krill swarm 
structure, the school detection module was applied 
to the 120 kHz raw and interference noise removed 
data. A total of 51 krill swarms were subsequently 
identified from the dataset analysed. The swarm 
properties examined did not differ significantly 
between the raw and the processed data (p > 0.2, 
see Table 3 and Figure 6).

Effect on echo integration

The mean Sv values of 1 m depth bin of the 
raw samples, with background noise and strong 
interference included, showed skewed distribu-
tion with a long right tail for the three frequencies 
(Figure 7(a), black lines). Taking 38 kHz for exam-
ple, about 80% and 1.3% of the total raw samples 
have an Sv value falling below the Tmin (–80 dB) or 
above the Tmax (–50 dB) respectively, while con-
tributing about 0.45% and 97% to the total back-
scattering coefficient (sa, m2 m–2). By removing the 
interference noise, unimodal distributions (Figure 
7(a), red lines) mainly consisting of krill swarm 

Table 2: Specification of parameter settings applied in
the swarm detection algorithm for 120 kHz data. 

Parameters  Settings 

Maximum permitted data range (m) 400 or sea bottom 
Minimum Sv threshold (dB) –70 
Min. horizontal candidate (m) 10 
Min. vertical candidate (m) 0.5 
Max. horizontal linking distance (m) 15 
Max. vertical linking distance (m) 5 
Min. total swarm length (m) 15 
Min. total swarm height (m) 2 
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echoes were obtained. Subsequently, echo intensity 
(MVBS) over each ping in the defined region were 
significantly reduced (Figure 7b).

The distribution of ΔMVBS120–38 kHz obtained 
from the raw data of 51 swarms were obvi-
ously skewed (Figure 8a), with a mean (±s.d.) of 
2.8 ± 10.0. By removing the interference noise, 
the ΔMVBS120–38 kHz showed a much narrowed 
distribution with a mean of 10.2 ± 3.2 re 1 m–1 
(Figure 8c). The mean (±s.d.) of ΔMVBS120–70 kHz 
were estimated as 4.8 ± 2.4 and 4.8 ± 1.6 dB re 
1 m–1 for the raw (Figure 8b) and interference noise 
removed data (Figure 8d) respectively.

Discussion
Recently, an increase in the number of krill 

fishing vessels and the rising cost of undertaking 
large-scale scientific research in the Antarctic have 
drawn attention to potential use of fishing vessels 
to collect extensive scientific data (Watkins et al., 
2015). The concept that krill fishing vessels could 
contribute acoustic data was evaluated with exam-
ple datasets from several vessels (SC-CAMLR, 
2014). Preliminary investigation of this fishing-
vessel-based data has shown the potential to pro-
vide qualitative and quantitative information on 
the distribution and relative abundance of Antarctic 
krill and other pelagic species (SC-CAMLR, 2015; 
IMOS www.imos.org.au/basoop.html). However, 
one of the impediments that restricts the utility of 
such data is the high level of noise, typically due to 
the configuration of vessels for commercial, rather 
than scientific survey, purposes (ICES, 2007). In 
addition to the frequent occurrence of background 
noise, interference noise arising from other acous-
tic instruments may also contaminate the acoustic 
data collected by fishing vessels. For example, 
the Chinese krill fishing vessel Fu Rong Hai was 
found to have two other echosounders besides the 
Simrad EK60, as well as two sonars, working at the 
same time during normal fishing operations. Due 
to the lack of any synchronisation of these acoustic 
instruments, significant ‘spike-like’ interference 
noise occurred widely because the EK60 data were 
corrupted by the krill swarm echoes. The interfer-
ences were most pronounced at 38 kHz because 
of other acoustic instruments having the same or 
a similar frequency, while the level of background 
noise was frequency-dependent and the highest at 
120 kHz. 
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It is reasonable to assume that similar situa-
tions of interference noise might also be present 
in the acoustic data collected from other krill fish-
ing vessels. Two post-processing methods have 
been described to filter out interference noise. One 
method is based on a 7 × 7 convolution filter, which 
was subsequently used for investigating the krill 
swarm characteristics (Klevjer et al., 2010); the 
other method was based on a two-sided comparison 
filter, which was applied to acoustic data collected 
both from fishing and research vessels (Anderson 
et al., 2005; Ryan et al., 2015). In both of the 
methods, an empirical threshold value needs to be 
determined and applied to differentiate interference 
noise from ‘target’ echoes. As a result, there will 
be instances where target echoes are removed or 
interference noise is retained if the threshold crite-
ria are violated (Ryan et al., 2015). Moreover, both 
of these methods are designated to treat datasets 
where there is a low occurrence of interference, 
therefore, with particularly poor-quality data where 
significant interference occurred, the residual error 
in the processed data might still be significant.

Compared with the above techniques, the 
post-processing technique presented in the paper 
is aimed at reducing significant interference noise 
from contaminated acoustic data. It can be simply 
utilised based on the existing virtual variable opera-
tors in the Echoview post-processing software. Its 
utility was demonstrated by applying to the data 
collected from a Chinese krill fishing vessel. The 
resulting echograms showed that most of the sig-
nificant interferences were effectively removed and 
there was no evident change to the swarm structure. 
Only the mean acoustic density, thickness and 
perimeter seemed to be reduced which were likely 
to be caused by removing strong interference noise 
within, or affiliated with, the krill swarms. 

Echo integration over an example region showed 
that although the majority (80%) of the samples are 
contaminated with background noise, the strong 
interference noise is likely to dominate the total 
backscattering. Without appropriate elimination, 
this strong interference noise will cause significant 
positive bias if the data are used for krill density 
estimation. 

The dB-differencing (ΔMVBS) technique is 
widely used for identifying Antarctic krill from 
other acoustic scatters (Madureira et al., 1993; 
Watkins and Brierley, 2002; Fielding et al., 2014). 

For krill with length ranging from 30 to 60 mm, 
the target identification window is estimated as 0.4 
to 12.0 and –0.6 to 13.8 based on the simplified and 
full SDWBA model for ΔMVBS120–38 kHz respec-
tively (McGehee et al., 1998; Demer and Conti, 
2003; Conti and Demer, 2006; SC-CAMLR, 2010; 
Calise and Skaret, 2011). For the krill swarms 
examined in this study, only 53% and 65% of the 
ΔMVBS120–38 kHz obtained from the raw data were 
located within the above theoretical windows; by 
removing the interference noise, the proportions 
increased to 79% and 93% respectively. There was 
no evident change to the mean value of ΔMVBS120–

70 kHz, while the standard deviation was reduced 
by 0.8 dB by applying the method, indicating the 
application of the method would benefit krill iden-
tification utilising the dB difference technique.

Although the results are encouraging for the 
examination of krill swarm structure and echo inte-
gration, other sources of bias and error may still 
remain in the retained data. Firstly, a major bias 
may arise from removing the background noise 
and strong interference by Sv thresholding (step i). 
In the present study, the minimum and maximum 
thresholds were determined either as empirical val-
ues or by visual inspection of the echogram when 
good discrimination between noise and krill echoes 
are observed. Inevitably, there will be instances 
where echo strength of krill overlaps with back-
ground or interference noise. If this occurs, nega-
tive bias may arise from thresholding because valid 
echo from krill may be mistaken as noise. This 
bias is likely to increase when the variance of krill 
swarm echoes is significant, therefore, reducing the 
size of treated dataset and determining thresholds 
for each dataset may reduce the bias. Secondly, an 
error may arise from the potential ineffectiveness 
of erosion filtering for general removal of interfer-
ence noise (step ii). The source of error is that the 
N × N erosion filter will be invalid if there are N × N 
or more samples of noise retained within one slid-
ing window after thresholding. For example, some 
interference noise was still evident at depths below 
200 m at 38 kHz, an error may become more signif-
icant when the data quality is extremely poor or at 
long range where the signal-to-noise ratio (SNR) is 
low. A pre-estimation and removal of background 
noise (Takao and Furusawa, 1995; Watkins and 
Brierley, 1996; Korneliussen, 2000; De Robertis 
and Higginbottom, 2007) is likely to improve the 
performance of the present method. 



Wang et al.

24

Finally, it should be noted that the method pre-
sented here does provide an opportunity to improve 
the utility of acoustic data contaminated by signifi-
cant interference, however, exact estimation of the 
residual bias in the processed data is still unknown. 
It is important to stress that, while post-processing 
can alleviate the potential problems of interference 
noise, measures to avoid the situation occurring, 
such as turning off other acoustic instruments or 
proper synchronisation, should always be the first 
priority if the data are collected for krill biomass 
estimation.
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Figure 1: Conceptual flow diagram of the main 
procedures in the interference noise removal 
method. The operations applied, indicated 
in italics, follow the terminology defined in 
Echoview.
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Figure 2: Operational flow diagram of the interference noise removal 
method based on the virtual variable operators in Echoview.
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Figure 3: Locations (red) of acoustic data and krill sample 
collection during normal fishing activities around 
South Georgia on 24 August 2013.
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Figure 5: Vertical distribution of mean Sv in a ping 
randomly selected from the region between the 
dashed lines in Figure 4(a). The Sv values were 
vertically averaged over 1 m bins.
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Figure 7: Frequency distribution of mean Sv (a) and variation of MVBS (b) for 20 consecutive pings (without vacant samples) 
from the region between the dashed lines in Figure 4(a). The black lines and the red lines represent results obtained 
from the raw data and the processed data respectively. The frequency occurrence of mean Sv is the number of mean 
Sv grouped in 3 dB intervals, while the mean Sv values were averaged over 1 m depth bins. The MVBS were the 
arithmetic mean of the Sv samples over each ping performed in the linear domain. 

Figure 8: Frequency distribution of the dB-difference for krill swarm echoes. (a) and (b) 
represent results obtained from the raw data; (c) and (d) represent results obtained 
from the interference noise removed data.
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