Home Home

CCAMLR

Commission for the Conservation of Antarctic Marine Living Resources

  • Home
  • Skip to Content
  • Log in

Search form

  • About CCAMLR
  • Conservation measures
  • Science
  • Fisheries
  • Compliance
  • Data
  • Meetings
  • Publications
  • Circulars
  • English
  • Français
  • Русский
  • Español
  • Home
  • Publications
  • CCAMLR Science
  • CCAMLR Science, Volume 3
  • CCAMLR Science, Volume 3 (1996):31–54

Publications

  • Basic Documents
  • Statistical Bulletin
    • Statistical Bulletin - Archive
  • CCAMLR Brochure
  • CCAMLR Science
    • Table of Contents
  • Conservation measures
    • Browse conservation measures
    • Past and present conservation measures
  • Commission reports
  • Scientific Committee reports
  • Fishery Reports
  • Fishery Reports archive
  • Fishing-related documents
  • Manuals
  • Posters and other promotional material
  • Scientific Abstracts
  • Order a publication
Print this page
Increase font size
Decrease font size

CCAMLR Science, Volume 3 (1996):31–54

Journal Volume:
CCAMLR Science, Volume 3
Page Numbers:
31–54
Author(s):
Constable, A. and W.K. de la Mare
download attachmentDownload (1.15 MB)

A generalised model for evaluating yield and the long-term status of fish stocks under conditions of uncertainty

Abstract / Description: 

This paper presents a general fish stock projection model for assessing the long-term annual yield which satisfies objectives for the maintenance of the spawning stock biomass in accordance with CCAMLR criteria. These specify a bound on the probability that the spawning biomass will become depleted to below some specified level over a specified period and set a further constraint on the long-term status of the stock relative to the pre-exploitation biomass. The model provides a flexible method for assessing the influence of different patterns of growth, natural mortality, spawning and fishing on estimates of yield and yield per recruit. It can also be used to evaluate stochastic stock trajectories under a specified catch regime. The model uses an adaptive Runge-Kutta algorithm to calculate stock trajectories and catch rates over a specified simulation period. The procedure numerically integrates a set of differential equations which incorporate functions that specify growth, mortality, age-dependent selectivity and seasonal patterns in fishing mortality. Results from the model are compared with existing analyses from the krill yield model. The model can include a known catch history and thus allow assessments of yield to be made for existing fisheries. An example is presented for the Patagonian toothfish, Dissostichus eleginoides, around South Georgia Island.

This page was last modified on 26 Nov 2012

Contact us

Email: ccamlr [at] ccamlr [dot] org
Telephone: +61 3 6210 1111
Fax: +61 3 6224 8744
Address: 181 Macquarie Street, Hobart, 7000, Tasmania, Australia

 

Quick Links

  • CCAMLR data forms
  • Job vacancies
  • CCAMLR Tagging Program Equipment Ordering Information
  • Schedule of Conservation Measures in Force 2021/22

Recent and Upcoming Meetings

  • Log in
  • CCAMLR e-groups
  • Support
  • Copyright
  • Disclaimer and Privacy Policy
  • Sitemap
  • Intranet
  • Webmail
© Copyright - the Commission for the Conservation of Antarctic Marine Living Resources 2025, All rights reserved.  |  Top of page  |  Site by Eighty Options